Extracting Relevant Information from Samples

Naftali Tishby

School of Computer Science and Engineering Interdisciplinary Center for Neural Computation The Hebrew University of Jerusalem, Israel

ISAIM 2008

Notivating examples Sufficient Statistics Relevance and Information

Outline

Mathematics of relevance

- Motivating examples
- Sufficient Statistics
- Relevance and Information
- 2) The Information Bottleneck Method
 - Relations to learning theory
 - Finite sample bounds
 - Consistency and optimality
- Further work and Conclusions
 - The Perception Action Cycle
 - Temporary conclusions

Motivating examples Sufficient Statistics Relevance and Information

Examples: Co-occurrence data

(words-topics, genes-tissues, etc.)

Naftali Tishby Extracting Relevant Information from Samples

Motivating examples Sufficient Statistics Relevance and Information

Example: Objects and pixels

Motivating examples Sufficient Statistics Relevance and Information

Example: Neural codes (e.g. de-Ruyter and Bialek)

Typical laboratory experimental setup

Motivating examples Sufficient Statistics Relevance and Information

Neural codes (Fly H1 cell recording, with Rob de-Ruyter and Bill Bialek)

Naftali Tishby Extracting Relevant Information from Samples

Motivating examples Sufficient Statistics Relevance and Information

Sufficient statistics

What captures the *relevant properties* in a sample about a parameter?

• Given an i.i.d. sample $x^{(n)} \sim p(x|\theta)$

Definition (Sufficient statistic)

A sufficient statistic: $T(x^{(n)})$ is a function of the sample such that

$$p(x^{(n)}|T(x^{(n)}) = t, \theta) = p(x^{(n)}|T(x^{(n)}) = t).$$

Theorem (Fisher Neyman factorization)

 $T(x^{(n)})$ is sufficient for θ in $p(x|\theta) \iff$ there exist $h(x^{(n)})$ and $g(T,\theta)$ such that

$$p(x^{(n)}|\theta) = h(x^{(n)})g(T(x^{(n)}),\theta).$$

Motivating examples Sufficient Statistics Relevance and Information

Sufficient statistics

What captures the *relevant properties* in a sample about a parameter?

• Given an i.i.d. sample $x^{(n)} \sim p(x|\theta)$

Definition (Sufficient statistic)

A sufficient statistic: $T(x^{(n)})$ is a function of the sample such that

$$p(x^{(n)}|T(x^{(n)}) = t, \theta) = p(x^{(n)}|T(x^{(n)}) = t).$$

Theorem (Fisher Neyman factorization)

 $T(x^{(n)})$ is sufficient for θ in $p(x|\theta) \iff$ there exist $h(x^{(n)})$ and $g(T,\theta)$ such that

$$p(x^{(n)}|\theta) = h(x^{(n)})g(T(x^{(n)}),\theta).$$

Motivating examples Sufficient Statistics Relevance and Information

Sufficient statistics

What captures the *relevant properties* in a sample about a parameter?

• Given an i.i.d. sample $x^{(n)} \sim p(x|\theta)$

Definition (Sufficient statistic)

A sufficient statistic: $T(x^{(n)})$ is a function of the sample such that

$$p(x^{(n)}|T(x^{(n)}) = t, \theta) = p(x^{(n)}|T(x^{(n)}) = t).$$

Theorem (Fisher Neyman factorization)

 $T(x^{(n)})$ is sufficient for θ in $p(x|\theta) \iff$ there exist $h(x^{(n)})$ and $g(T, \theta)$ such that

$$p(x^{(n)}|\theta) = h(x^{(n)})g(T(x^{(n)}),\theta).$$

Motivating examples Sufficient Statistics Relevance and Information

Minimal sufficient statistics

 There are always trivial (complex) sufficient statistics - e.g. the sample itself.

Definition (Minimal sufficient statistic)

 $S(x^{(n)})$ is a *minimal sufficient statistic* for θ in $p(x|\theta)$ if it is a function of any other sufficient statistics $T(x^{(n)})$.

- *S*(*Xⁿ*) gives the coarser *sufficient partition* of the *n*-sample space.
- *S* is unique (up to 1-1 map).

・ 回 ト ・ ヨ ト ・ ヨ ト

Motivating examples Sufficient Statistics Relevance and Information

Minimal sufficient statistics

 There are always trivial (complex) sufficient statistics - e.g. the sample itself.

Definition (Minimal sufficient statistic)

 $S(x^{(n)})$ is a *minimal sufficient statistic* for θ in $p(x|\theta)$ if it is a function of any other sufficient statistics $T(x^{(n)})$.

- *S*(*Xⁿ*) gives the coarser *sufficient partition* of the *n*-sample space.
- *S* is unique (up to 1-1 map).

・ 回 ト ・ ヨ ト ・ ヨ ト

Motivating examples Sufficient Statistics Relevance and Information

Minimal sufficient statistics

 There are always trivial (complex) sufficient statistics - e.g. the sample itself.

Definition (Minimal sufficient statistic)

 $S(x^{(n)})$ is a *minimal sufficient statistic* for θ in $p(x|\theta)$ if it is a function of any other sufficient statistics $T(x^{(n)})$.

- *S*(*Xⁿ*) gives the coarser *sufficient partition* of the *n*-sample space.
- S is unique (up to 1-1 map).

伺き くほき くほう

Motivating examples Sufficient Statistics Relevance and Information

Minimal sufficient statistics

 There are always trivial (complex) sufficient statistics - e.g. the sample itself.

Definition (Minimal sufficient statistic)

 $S(x^{(n)})$ is a *minimal sufficient statistic* for θ in $p(x|\theta)$ if it is a function of any other sufficient statistics $T(x^{(n)})$.

- *S*(*Xⁿ*) gives the coarser *sufficient partition* of the *n*-sample space.
- *S* is unique (up to 1-1 map).

伺 とく ヨ とく ヨ と

Motivating examples Sufficient Statistics Relevance and Information

Sufficient statistics and exponential forms

• What distributions have sufficient statistics?

Theorem (Pitman, Koopman, Darmois.)

Among families of parametric distributions whose domain does not vary with the parameter, only in **exponential families**,

$$p(x|\theta) = h(x) \exp\left(\sum_{r} \eta_r(\theta) A_r(x) - A_0(\theta)\right),$$

there are sufficient statistics for θ with bounded dimensionality: $T_r(x^{(n)}) = \sum_{k=1}^n A_r(x_k)$, (additive for i.i.d. samples).

Motivating examples Sufficient Statistics Relevance and Information

Sufficient statistics and exponential forms

• What distributions have sufficient statistics?

Theorem (Pitman, Koopman, Darmois.)

Among families of parametric distributions whose domain does not vary with the parameter, only in **exponential families**,

$$p(x|\theta) = h(x) \exp\left(\sum_{r} \eta_r(\theta) A_r(x) - A_0(\theta)\right),$$

there are sufficient statistics for θ with bounded dimensionality: $T_r(x^{(n)}) = \sum_{k=1}^n A_r(x_k)$, (additive for i.i.d. samples).

Motivating examples Sufficient Statistics Relevance and Information

Sufficiency and Information

Definition (Mutual Information)

For any two random variables X and Y with joint pdf P(X = x, Y = y) = p(x, y), Shannon's mutual information I(X; Y) is defined as

$$I(X; Y) = \mathbb{E}_{p(x,y)} \log \frac{p(x,y)}{p(x)p(y)}$$

• $I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \ge 0$

I(X; Y) = D_{KL}[p(x, y)|p(x)p(y)], maximal number (on average) of independent bits on Y that can be revealed from measurements on X.

Motivating examples Sufficient Statistics Relevance and Information

Sufficiency and Information

Definition (Mutual Information)

For any two random variables X and Y with joint pdf P(X = x, Y = y) = p(x, y), Shannon's mutual information I(X; Y) is defined as

$$I(X;Y) = \mathbb{E}_{p(x,y)} \log \frac{p(x,y)}{p(x)p(y)}$$

- $I(X; Y) = H(X) H(X|Y) = H(Y) H(Y|X) \ge 0$
- I(X; Y) = D_{KL}[p(x, y)|p(x)p(y)], maximal number (on average) of independent bits on Y that can be revealed from measurements on X.

Motivating examples Sufficient Statistics Relevance and Information

Sufficiency and Information

Definition (Mutual Information)

For any two random variables X and Y with joint pdf P(X = x, Y = y) = p(x, y), Shannon's mutual information I(X; Y) is defined as

$$I(X; Y) = \mathbb{E}_{p(x,y)} \log \frac{p(x,y)}{p(x)p(y)}$$

- $I(X; Y) = H(X) H(X|Y) = H(Y) H(Y|X) \ge 0$
- I(X; Y) = D_{KL}[p(x, y)|p(x)p(y)], maximal number (on average) of independent bits on Y that can be revealed from measurements on X.

Motivating examples Sufficient Statistics Relevance and Information

Properties of Mutual Information

• Key properties of mutual information:

Theorem (Data-processing inequality)

When $X \to Y \to Z$ form a Markov chain, then

 $I(X;Z) \leq I(X;Y)$

- data processing can't increase (mutual) information.

Theorem (Joint typicality)

The probability of a typical sequence $y^{(n)}$ to be jointly typical with an independent typical sequence $x^{(n)}$ is

$$P(y^{(n)}|x^{(n)}) \propto \exp(-nI(X;Y)).$$

Motivating examples Sufficient Statistics Relevance and Information

Properties of Mutual Information

• Key properties of mutual information:

Theorem (Data-processing inequality)

When $X \to Y \to Z$ form a Markov chain, then

 $I(X; Z) \leq I(X; Y)$

- data processing can't increase (mutual) information.

Theorem (Joint typicality)

The probability of a typical sequence $y^{(n)}$ to be jointly typical with an independent typical sequence $x^{(n)}$ is

$$P(y^{(n)}|x^{(n)}) \propto \exp(-nI(X;Y)).$$

Motivating examples Sufficient Statistics Relevance and Information

Properties of Mutual Information

Key properties of mutual information:

Theorem (Data-processing inequality)

When $X \to Y \to Z$ form a Markov chain, then

 $I(X; Z) \leq I(X; Y)$

- data processing can't increase (mutual) information.

Theorem (Joint typicality)

The probability of a typical sequence $y^{(n)}$ to be jointly typical with an independent typical sequence $x^{(n)}$ is

$$P(y^{(n)}|x^{(n)}) \propto \exp(-nI(X;Y)).$$

ヘロマ ヘビマ ヘビマ

Motivating examples Sufficient Statistics Relevance and Information

Sufficiency and Information

 When the parameter θ is a random variable (we are Bayesian), we can characterize sufficiency and minimality using mutual information:

Theorem (Sufficiency and Information)

• T is sufficient statistics for θ in $p(x|\theta) \iff$

 $I(T(X^n);\theta) = I(X^n;\theta).$

• If S is minimal sufficient statistics for θ in $p(x|\theta)$, then:

 $I(S(X^n);X^n) \le I(T(X^n);X^n).$

That is, among all sufficient statistics, minimal maintain the least mutual information on the sample Xⁿ.

э

・ロット (雪) () () () ()

Motivating examples Sufficient Statistics Relevance and Information

Sufficiency and Information

 When the parameter θ is a random variable (we are Bayesian), we can characterize sufficiency and minimality using mutual information:

Theorem (Sufficiency and Information)

• T is sufficient statistics for θ in $p(x|\theta) \iff$

 $I(T(X^n);\theta) = I(X^n;\theta).$

• If *S* is minimal sufficient statistics for θ in $p(x|\theta)$, then:

 $I(S(X^n); X^n) \le I(T(X^n); X^n).$

That is, among all sufficient statistics, minimal maintain the least mutual information on the sample X^n .

ヘロン 人間 とくほ とくほう

Motivating examples Sufficient Statistics Relevance and Information

Sufficiency and Information

 When the parameter θ is a random variable (we are Bayesian), we can characterize sufficiency and minimality using mutual information:

Theorem (Sufficiency and Information)

• T is sufficient statistics for θ in $p(x|\theta) \iff$

 $I(T(X^n);\theta)=I(X^n;\theta).$

• If *S* is minimal sufficient statistics for θ in $p(x|\theta)$, then:

 $I(S(X^n); X^n) \le I(T(X^n); X^n).$

That is, among all sufficient statistics, minimal maintain the least mutual information on the sample X^n .

ヘロト 人間 とくほ とくほう

Motivating examples Sufficient Statistics Relevance and Information

Sufficiency and Information

 When the parameter θ is a random variable (we are Bayesian), we can characterize sufficiency and minimality using mutual information:

Theorem (Sufficiency and Information)

• T is sufficient statistics for θ in $p(x|\theta) \iff$

 $I(T(X^n);\theta)=I(X^n;\theta).$

• If *S* is minimal sufficient statistics for θ in $p(x|\theta)$, then:

 $I(S(X^n); X^n) \leq I(T(X^n); X^n).$

That is, among all sufficient statistics, minimal maintain the least mutual information on the sample X^n .

ヘロト 人間 とくほ とくほう

Motivating examples Sufficient Statistics Relevance and Information

The Information Bottleneck: Approximate Minimal Sufficient Statistics

- Given (X, Y) ~ p(x, y), the above theorem suggests a definition for *the relevant part* of X with respect to Y.
 Find a random variable T such that:
 - $T \leftrightarrow X \leftrightarrow Y$ form a Markov chain
 - *I*(*T*; *X*) is minimized (minimality, complexity term) while *I*(*T*; *Y*) is maximized (sufficiency, accuracy term).
- Equivalent to the minimization of the following Lagrangian:

$\mathcal{L}[p(t|x)] = I(X;T) - \beta I(Y;T)$

subject to the Markov conditions. Varying the Lagrange multiplier β yields an *information tradeoff curve*, similar to RDT.

T is called the Information Bottleneck between X and Y.

Motivating examples Sufficient Statistics Relevance and Information

The Information Bottleneck: Approximate Minimal Sufficient Statistics

- Given (X, Y) ~ p(x, y), the above theorem suggests a definition for *the relevant part* of X with respect to Y.
 Find a random variable T such that:
 - $T \leftrightarrow X \leftrightarrow Y$ form a Markov chain
 - *I*(*T*; *X*) is minimized (minimality, complexity term) while *I*(*T*; *Y*) is maximized (sufficiency, accuracy term).
- Equivalent to the minimization of the following Lagrangian:

$\mathcal{L}[p(t|x)] = I(X;T) - \beta I(Y;T)$

subject to the Markov conditions. Varying the Lagrange multiplier β yields an *information tradeoff curve*, similar to RDT.

T is called the Information Bottleneck between X and Y.

Motivating examples Sufficient Statistics Relevance and Information

The Information Bottleneck: Approximate Minimal Sufficient Statistics

- Given (X, Y) ~ p(x, y), the above theorem suggests a definition for *the relevant part* of X with respect to Y.
 Find a random variable T such that:
 - $T \leftrightarrow X \leftrightarrow Y$ form a Markov chain
 - I(T; X) is minimized (minimality, complexity term) while I(T; Y) is maximized (sufficiency, accuracy term).
- Equivalent to the minimization of the following Lagrangian:

 $\mathcal{L}[p(t|x)] = I(X;T) - \beta I(Y;T)$

subject to the Markov conditions. Varying the Lagrange multiplier β yields an *information tradeoff curve*, similar to RDT.

T is called the Information Bottleneck between X and Y.

Motivating examples Sufficient Statistics Relevance and Information

The Information Bottleneck: Approximate Minimal Sufficient Statistics

- Given (X, Y) ~ p(x, y), the above theorem suggests a definition for *the relevant part* of X with respect to Y.
 Find a random variable T such that:
 - $T \leftrightarrow X \leftrightarrow Y$ form a Markov chain
 - I(T; X) is minimized (minimality, complexity term) while I(T; Y) is maximized (sufficiency, accuracy term).
- Equivalent to the minimization of the following Lagrangian:

$\mathcal{L}[p(t|x)] = I(X;T) - \beta I(Y;T)$

subject to the Markov conditions. Varying the Lagrange multiplier β yields an *information tradeoff curve*, similar to RDT.

• T is called the Information Bottleneck between X and Y.

Motivating examples Sufficient Statistics Relevance and Information

The Information Bottleneck: Approximate Minimal Sufficient Statistics

- Given (X, Y) ~ p(x, y), the above theorem suggests a definition for *the relevant part* of X with respect to Y.
 Find a random variable T such that:
 - $T \leftrightarrow X \leftrightarrow Y$ form a Markov chain
 - I(T; X) is minimized (minimality, complexity term) while I(T; Y) is maximized (sufficiency, accuracy term).
- Equivalent to the minimization of the following Lagrangian:

$\mathcal{L}[p(t|x)] = I(X;T) - \beta I(Y;T)$

subject to the Markov conditions. Varying the Lagrange multiplier β yields an *information tradeoff curve*, similar to RDT.

• *T* is called the *Information Bottleneck* between *X* and *Y*.

Motivating examples Sufficient Statistics Relevance and Information

The Information Curve

The *Information-Curve* for Multivariate Gaussian variables (GGTW 2005).

Relations to learning theory Finite sample bounds Consistency and optimality

Outline

Mathematics of relevance

- Motivating examples
- Sufficient Statistics
- Relevance and Information
- 2 The Information Bottleneck Method
 - Relations to learning theory
 - Finite sample bounds
 - Consistency and optimality
 - Further work and Conclusions
 - The Perception Action Cycle
 - Temporary conclusions

Relations to learning theory Finite sample bounds Consistency and optimality

The IB Algorithm I (Tishby, Periera, Bialek 1999)

How is the Information Bottleneck problem solved?

• $\frac{\delta \mathcal{L}}{\delta p(t|x)} = 0$ + the Markov and normalization constraints, yields the (bottleneck) self-consistent equations:

The bottleneck equations

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} \exp(-\beta D_{KL}[p(y|x)||p(y|t)])$$
(1)

$$p(t) = \sum_{x} p(t|x)p(x)$$
(2)

$$p(y|t) = \sum_{x} p(y|x)p(x|t) ,$$
(3)

$$\begin{split} Z(x,\beta) &= \sum_{t} p(t) \exp(-\beta D_{KL}[p(y|x)||p(y|t)]) \\ D_{KL}[p(y|x)||p(y||t)] &= \mathbb{E}_{p(y|x)} \log \frac{p(y|x)}{p(y|t)} = d_{lB}(x,t) \text{ - an effective distortion measure on the } q(y) \text{ simplex.} \end{split}$$

Relations to learning theory Finite sample bounds Consistency and optimality

The IB Algorithm I (Tishby, Periera, Bialek 1999)

How is the Information Bottleneck problem solved?

• $\frac{\delta \mathcal{L}}{\delta p(t|x)} = 0$ + the Markov and normalization constraints, yields the (bottleneck) self-consistent equations:

The bottleneck equations

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} \exp(-\beta D_{\mathcal{KL}}[p(y|x)||p(y|t)]) \qquad (1$$

$$p(t) = \sum_{x} p(t|x)p(x)$$
(2)

$$p(y|t) = \sum_{x} p(y|x)p(x|t) , \qquad (3)$$

$$\begin{split} Z(x,\beta) &= \sum_{t} p(t) \exp(-\beta D_{KL}[p(y|x)||p(y|t)]) \\ D_{KL}[p(y|x)||p(y||t)] &= \mathbb{E}_{p(y|x)} \log \frac{p(y|x)}{p(y|t)} = d_{lB}(x,t) \text{ - an effective distortion measure on the } q(y) \text{ simplex.} \end{split}$$

Relations to learning theory Finite sample bounds Consistency and optimality

The IB Algorithm II

As showed in (Tishby, Periera, Bialek 1999) iterating these equations converges for any β to a consistent solution:

Algorithm: randomly initiate; iterate for $k \ge 1$

$$\mathcal{D}_{k+1}(t|x) = \frac{\mathcal{P}_k(t)}{\mathcal{Z}(x,\beta)} \exp(-\beta \mathcal{D}_{\mathcal{K}L}[\mathcal{P}(y|x)||\mathcal{P}_k(y|t)])$$
(4)

$$p_k(t) = \sum_{x} p_k(t|x)p(x)$$
(5)

$$p_k(y|t) = \sum_{x} p(y|x) p_k(x|t) .$$
(6)

Naftali Tishby Extracting Relevant Information from Samples

Relations to learning theory Finite sample bounds Consistency and optimality

Relation with learning theory

Issues often raised about IB:

 If you assume you know p(x, y) - what else is left to be learned or modeled?

A: Relevance, meaning, explanations...

- How is it different from statistical modeling (e.g. Maximum Likelihood)?
 - A: it's not about statistical modeling.
- Is it supervised or unsupervised learning? (wrong question - none and both)
- What if you only have a finite sample? can it generalize?
- What's the advantage of maximizing information about Y (rather than other cost/loss)?
- Is there a "coding theorem" associated with this problem (what is good for)?

Relations to learning theory Finite sample bounds Consistency and optimality

Relation with learning theory

Issues often raised about IB:

 If you assume you know p(x, y) - what else is left to be learned or modeled?

A: Relevance, meaning, explanations...

- How is it different from statistical modeling (e.g. Maximum Likelihood)?
 - A: it's not about statistical modeling.
- Is it supervised or unsupervised learning? (wrong question - none and both)
- What if you only have a finite sample? can it generalize?
- What's the advantage of maximizing information about Y (rather than other cost/loss)?
- Is there a "coding theorem" associated with this problem (what is good for)?

Relations to learning theory Finite sample bounds Consistency and optimality

Relation with learning theory

Issues often raised about IB:

 If you assume you know p(x, y) - what else is left to be learned or modeled?

A: Relevance, meaning, explanations...

• How is it different from statistical modeling (e.g. Maximum Likelihood)?

A: it's not about statistical modeling.

- Is it supervised or unsupervised learning? (wrong question - none and both)
- What if you only have a finite sample? can it generalize?
- What's the advantage of maximizing information about Y (rather than other cost/loss)?
- Is there a "coding theorem" associated with this problem (what is good for)?

Relations to learning theory Finite sample bounds Consistency and optimality

Relation with learning theory

Issues often raised about IB:

 If you assume you know p(x, y) - what else is left to be learned or modeled?

A: Relevance, meaning, explanations...

• How is it different from statistical modeling (e.g. Maximum Likelihood)?

A: it's not about statistical modeling.

 Is it supervised or unsupervised learning? (wrong question - none and both)

• What if you only have a finite sample? can it generalize?

- What's the advantage of maximizing information about Y (rather than other cost/loss)?
- Is there a "coding theorem" associated with this problem (what is good for)?

Relations to learning theory Finite sample bounds Consistency and optimality

Relation with learning theory

Issues often raised about IB:

 If you assume you know p(x, y) - what else is left to be learned or modeled?

A: Relevance, meaning, explanations...

• How is it different from statistical modeling (e.g. Maximum Likelihood)?

A: it's not about statistical modeling.

- Is it supervised or unsupervised learning? (wrong question - none and both)
- What if you only have a finite sample? can it generalize?
- What's the advantage of maximizing information about *Y* (rather than other cost/loss)?
- Is there a "coding theorem" associated with this problem (what is good for)?

Relations to learning theory Finite sample bounds Consistency and optimality

Relation with learning theory

Issues often raised about IB:

 If you assume you know p(x, y) - what else is left to be learned or modeled?

A: Relevance, meaning, explanations...

• How is it different from statistical modeling (e.g. Maximum Likelihood)?

A: it's not about statistical modeling.

- Is it supervised or unsupervised learning? (wrong question - none and both)
- What if you only have a finite sample? can it generalize?
- What's the advantage of maximizing information about *Y* (rather than other cost/loss)?
- Is there a "coding theorem" associated with this problem (what is good for)?

Relations to learning theory Finite sample bounds Consistency and optimality

A Validation theorem Notation: ^denotes empirical quantities using an iid sample S of size m.

Theorem (Ohad Shamir & NT, 2007)

For any fixed random variable T defined via p(t|x), and for any confidence parameter $\delta > 0$, it holds with probability of at least $1 - \delta$ over the sample S that $|I(X; T) - \hat{I}(X; T)|$ is upper bounded by:

$$(|T|\log(m) + \log|T|)\sqrt{\frac{\log(8/\delta)}{2m}} + \frac{|T|-1}{m},$$

and similarly $|I(Y; T) - \hat{I}(Y; T)|$ is upper bounded by:

$$(1+\frac{3}{2}|T|)\log(m)\sqrt{\frac{2\log(8/\delta)}{m}}+\frac{(|Y|+1)(|T|+1)-4}{m}.$$

Relations to learning theory Finite sample bounds Consistency and optimality

- **Proof idea:** We apply McDiarmid's inequality to bound the sample variations of the empirical Entropies, and a recent bound by Liam Paninski on entropy estimation.
- The bounds on the information curve are independent of the cardinality of X (normally the larger variable) and weakly on |Y|. The bounds are larger for large T, which increase with β, as expected.
- The information curve can be approximated from a sample of size m ~ O(|Y||T|), much smaller than needed to estimate p(x, y)!
- But how about the quality of the estimated variable T (defined by p(t|x) itself?

Relations to learning theory Finite sample bounds Consistency and optimality

- **Proof idea:** We apply McDiarmid's inequality to bound the sample variations of the empirical Entropies, and a recent bound by Liam Paninski on entropy estimation.
- The bounds on the information curve are independent of the cardinality of X (normally the larger variable) and weakly on |Y|. The bounds are larger for large T, which increase with β, as expected.
- The information curve can be approximated from a sample of size m ~ O(|Y||T|), much smaller than needed to estimate p(x, y)!
- But how about the quality of the estimated variable T (defined by p(t|x) itself?

Relations to learning theory Finite sample bounds Consistency and optimality

- **Proof idea:** We apply McDiarmid's inequality to bound the sample variations of the empirical Entropies, and a recent bound by Liam Paninski on entropy estimation.
- The bounds on the information curve are independent of the cardinality of X (normally the larger variable) and weakly on |Y|. The bounds are larger for large T, which increase with β, as expected.
- The information curve can be approximated from a sample of size m ~ O(|Y||T|), much smaller than needed to estimate p(x, y)!
- But how about the quality of the estimated variable T (defined by p(t|x) itself?

→ E → < E →</p>

Relations to learning theory Finite sample bounds Consistency and optimality

- **Proof idea:** We apply McDiarmid's inequality to bound the sample variations of the empirical Entropies, and a recent bound by Liam Paninski on entropy estimation.
- The bounds on the information curve are independent of the cardinality of X (normally the larger variable) and weakly on |Y|. The bounds are larger for large T, which increase with β, as expected.
- The information curve can be approximated from a sample of size m ~ O(|Y||T|), much smaller than needed to estimate p(x, y)!
- But how about the quality of the estimated variable T (defined by p(t|x) itself?

Relations to learning theory Finite sample bounds Consistency and optimality

Generalization bounds

Theorem (Shamir & NT 2007)

For any confidence parameter $\delta \ge 0$, we have with probability of at least $1 - \delta$, for any T defined via p(t|x) and any constants $a, b_1, \ldots, b_{|T|}$, c simultaneously:

$$|I(X;T) - \hat{I}(X;T)| \leq \sum_{l} f\left(\frac{n(\delta)\|p(l|x) - b_{l}\|}{\sqrt{m}}\right) + \frac{n(\delta)\|H(T|x) - a\|}{\sqrt{m}},$$

$$|I(Y;T) - \hat{I}(Y;T)| \leq 2\sum_{l} f\left(\frac{n(\delta)\|p(l|x) - b_{l}\|}{\sqrt{m}}\right) + \frac{n(\delta)\|\hat{H}(T|y) - c\|}{\sqrt{m}}.$$

where $n(\delta) = 2 + \sqrt{2 \log \left(\frac{|Y|+2}{\delta}\right)}$, and f(x) is monotonically increasing and concave in |x|, defined as:

$$f(x) = \begin{cases} |x| \log(1/|x|) & |x| \le 1/e \\ 1/e & |x| > 1/e \end{cases}$$

Relations to learning theory Finite sample bounds Consistency and optimality

Corollary

Under the conditions and notation of Thm. 10, we have that if:

$$m \ge e^2 |X| \left(1 + \sqrt{rac{1}{2} \log\left(rac{|Y|+2}{\delta}
ight)}
ight)^2,$$

then with probability of at least $1 - \delta$, $|I(X; T) - \hat{I}(X; T)|$ is upper bounded by

$$n(\delta)\frac{\frac{1}{2}|T|\sqrt{|X|}\log\left(\frac{4m}{n^2(\delta)|X|}\right)+\sqrt{|X|}\log(|T|)}{2\sqrt{m}},$$

and $|I(Y; T) - \hat{I}(Y; T)|$ is upper bounded by

$$\textit{n}(\delta) \frac{|\textit{T}|\sqrt{|\textit{X}|} \log \left(\frac{4m}{\textit{n}^2(\delta)|\textit{X}|}\right) + \sqrt{|\textit{Y}|} \log(|\textit{T}|)}{2\sqrt{m}}$$

Relations to learning theory Finite sample bounds Consistency and optimality

Consistency and optimality

- If $m \sim |X||Y|$ and $|T| \ll |\sqrt{|Y|}$ the bound is tight. This is much less than needed to estimate p(x, y).
- We also obtain a statistical consistency result:

Theorem (IB is consistent (Shamir & NT 2007))

For any given β , let A be the set of IB optimal p(t|x). As $m \to \infty$, the optimal p(t|x) with respect to the empirical $\hat{p}(x, y)$, converges in total variation distance to A with probability 1 as $m \to \infty$.

• Finally, despite its apparent non-convexity, the IB solution is optimal and unique in a well defined sense (Harremoes & NT 2007, Shamir & NT 2007).

Relations to learning theory Finite sample bounds Consistency and optimality

Consistency and optimality

- If $m \sim |X||Y|$ and $|T| \ll |\sqrt{|Y|}$ the bound is tight. This is much less than needed to estimate p(x, y).
- We also obtain a statistical consistency result:

Theorem (IB is consistent (Shamir & NT 2007))

For any given β , let A be the set of IB optimal p(t|x). As $m \to \infty$, the optimal p(t|x) with respect to the empirical $\hat{p}(x, y)$, converges in total variation distance to A with probability 1 as $m \to \infty$.

• Finally, despite its apparent non-convexity, the IB solution is optimal and unique in a well defined sense (Harremoes & NT 2007, Shamir & NT 2007).

▶ < ∃ >

Relations to learning theory Finite sample bounds Consistency and optimality

Consistency and optimality

- If $m \sim |X||Y|$ and $|T| \ll |\sqrt{|Y|}$ the bound is tight. This is much less than needed to estimate p(x, y).
- We also obtain a statistical consistency result:

Theorem (IB is consistent (Shamir & NT 2007))

For any given β , let A be the set of IB optimal p(t|x). As $m \to \infty$, the optimal p(t|x) with respect to the empirical $\hat{p}(x, y)$, converges in total variation distance to A with probability 1 as $m \to \infty$.

• Finally, despite its apparent non-convexity, the IB solution is optimal and unique in a well defined sense (Harremoes & NT 2007, Shamir & NT 2007).

Relations to learning theory Finite sample bounds Consistency and optimality

Consistency and optimality

- If $m \sim |X||Y|$ and $|T| \ll |\sqrt{|Y|}$ the bound is tight. This is much less than needed to estimate p(x, y).
- We also obtain a statistical consistency result:

Theorem (IB is consistent (Shamir & NT 2007))

For any given β , let A be the set of IB optimal p(t|x). As $m \to \infty$, the optimal p(t|x) with respect to the empirical $\hat{p}(x, y)$, converges in total variation distance to A with probability 1 as $m \to \infty$.

• Finally, despite its apparent non-convexity, the IB solution is optimal and unique in a well defined sense (Harremoes & NT 2007, Shamir & NT 2007).

A D b 4 A b

< ∃→

The Perception Action Cycle Temporary conclusions

Outline

Mathematics of relevance

- Motivating examples
- Sufficient Statistics
- Relevance and Information
- 2 The Information Bottleneck Method
 - Relations to learning theory
 - Finite sample bounds
 - Consistency and optimality

In the state of the state of

- The Perception Action Cycle
- Temporary conclusions

The Perception Action Cycle Temporary conclusions

Lookahead: The Perception Action Cycle

An exciting new application of IB is for characterizing optimal steady-state interaction between an organism and its environment: Tishby 2007, Taylor, Tishby & Bialek 2007, Tishby & Polani 2007)

Perception-Prediction-Action Cycle

hod ons The Perception Action (Temporary conclusions

Summary

- Relevance can be identified with an extension of the classical notion of *minimal sufficient statistics*
- Can be quantified using information theoretic notions, leading to the IB principle.
- Yielding practical algorithms for extracting relevant variables.
- Can be done efficiently and consistently from empirical data, but isn't standard learning theory.
- Has many applications, most exciting so far in biology and cognitive science.

프 🖌 🛪 프 🕨

The Perception Action Cycle Temporary conclusions

Summary

- Relevance can be identified with an extension of the classical notion of *minimal sufficient statistics*
- Can be quantified using information theoretic notions, leading to the IB principle.
- Yielding practical algorithms for extracting relevant variables.
- Can be done efficiently and consistently from empirical data, but isn't standard learning theory.
- Has many applications, most exciting so far in biology and cognitive science.

- ⊒ → - < = →

The Perception Action Cycle Temporary conclusions

Summary

- Relevance can be identified with an extension of the classical notion of *minimal sufficient statistics*
- Can be quantified using information theoretic notions, leading to the IB principle.
- Yielding practical algorithms for extracting relevant variables.
- Can be done efficiently and consistently from empirical data, but isn't standard learning theory.
- Has many applications, most exciting so far in biology and cognitive science.

< ∃⇒

The Perception Action Cycle Temporary conclusions

Summary

- Relevance can be identified with an extension of the classical notion of *minimal sufficient statistics*
- Can be quantified using information theoretic notions, leading to the IB principle.
- Yielding practical algorithms for extracting relevant variables.
- Can be done efficiently and consistently from empirical data, but isn't standard learning theory.
- Has many applications, most exciting so far in biology and cognitive science.

< ∃⇒

The Perception Action Cycle Temporary conclusions

Summary

- Relevance can be identified with an extension of the classical notion of *minimal sufficient statistics*
- Can be quantified using information theoretic notions, leading to the IB principle.
- Yielding practical algorithms for extracting relevant variables.
- Can be done efficiently and consistently from empirical data, but isn't standard learning theory.
- Has many applications, most exciting so far in biology and cognitive science.

The Perception Action Cycle Temporary conclusions

Thank You!

æ

Naftali Tishby Extracting Relevant Information from Samples

・ロト ・回ト ・ヨト ・ヨト