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Examples: Co-occurrence data
(words-topics, genes-tissues, etc.)
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Sufficient statistics

What captures the relevant properties in a sample about a
parameter?

Given an i.i.d. sample x (n) ∼ p(x |θ)

Definition (Sufficient statistic)

A sufficient statistic: T (x (n)) is a function of the sample such
that

p(x (n)|T (x (n)) = t , θ) = p(x (n)|T (x (n)) = t).

Theorem (Fisher Neyman factorization)

T (x (n)) is sufficient for θ in p(x |θ) ⇐⇒ there exist h(x (n)) and
g(T , θ) such that

p(x (n)|θ) = h(x (n))g(T (x (n)), θ).
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Minimal sufficient statistics

There are always trivial (complex) sufficient statistics - e.g.
the sample itself.

Definition (Minimal sufficient statistic)

S(x (n)) is a minimal sufficient statistic for θ in p(x |θ) if it is a
function of any other sufficient statistics T (x (n)).

S(X n) gives the coarser sufficient partition of the n-sample
space.
S is unique (up to 1-1 map).
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Sufficient statistics and exponential forms

What distributions have sufficient statistics?

Theorem (Pitman, Koopman, Darmois.)
Among families of parametric distributions whose domain does
not vary with the parameter, only in exponential families,

p(x |θ) = h(x) exp

(∑
r

ηr (θ)Ar (x)− A0(θ)

)
,

there are sufficient statistics for θ with bounded dimensionality:
Tr (x (n)) =

∑n
k=1 Ar (xk ), (additive for i.i.d. samples).
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Sufficiency and Information

Definition (Mutual Information)
For any two random variables X and Y with joint pdf
P(X = x , Y = y) = p(x , y), Shannon’s mutual information
I(X ; Y ) is defined as

I(X ; Y ) = Ep(x ,y) log
p(x , y)

p(x)p(y)
.

I(X ; Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ) ≥ 0
I(X ; Y ) = DKL[p(x , y)|p(x)p(y)], maximal number (on
average) of independent bits on Y that can be revealed
from measurements on X .
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Properties of Mutual Information

Key properties of mutual information:

Theorem (Data-processing inequality)

When X → Y → Z form a Markov chain, then

I(X ; Z ) ≤ I(X ; Y )

- data processing can’t increase (mutual) information.

Theorem (Joint typicality)

The probability of a typical sequence y (n) to be jointly typical
with an independent typical sequence x (n) is

P(y (n)|x (n)) ∝ exp(−nI(X ; Y )).
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Sufficiency and Information

When the parameter θ is a random variable (we are
Bayesian), we can characterize sufficiency and minimality
using mutual information:

Theorem (Sufficiency and Information)

T is sufficient statistics for θ in p(x |θ) ⇐⇒

I(T (X n); θ) = I(X n; θ).

If S is minimal sufficient statistics for θ in p(x |θ), then:

I(S(X n); X n) ≤ I(T (X n); X n).

That is, among all sufficient statistics, minimal maintain the least
mutual information on the sample X n.
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The Information Bottleneck: Approximate Minimal
Sufficient Statistics

Given (X , Y ) ∼ p(x , y), the above theorem suggests a
definition for the relevant part of X with respect to Y .
Find a random variable T such that:

T ↔ X ↔ Y form a Markov chain
I(T ; X ) is minimized (minimality, complexity term)
while I(T ; Y ) is maximized (sufficiency, accuracy term).

Equivalent to the minimization of the following Lagrangian:

L[p(t |x)] = I(X ; T )− βI(Y ; T )

subject to the Markov conditions. Varying the Lagrange
multiplier β yields an information tradeoff curve, similar to
RDT.
T is called the Information Bottleneck between X and Y .
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The Information Curve

The Information-Curve for Multivariate Gaussian variables
(GGTW 2005).
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The IB Algorithm I (Tishby, Periera, Bialek 1999)

How is the Information Bottleneck problem solved?
δL

δp(t |x) = 0 + the Markov and normalization constraints,
yields the (bottleneck) self-consistent equations:

The bottleneck equations

p(t |x) =
p(t)

Z (x , β)
exp(−βDKL[p(y |x)||p(y |t)]) (1)

p(t) =
∑

x

p(t |x)p(x) (2)

p(y |t) =
∑

x

p(y |x)p(x |t) , (3)

Z (x, β) =
∑

t p(t) exp(−βDKL[p(y|x)||p(y|t)])
DKL[p(y|x)||p(y||t)] = Ep(y|x) log p(y|x)

p(y|t) = dIB(x, t) - an effective distortion measure on the q(y) simplex.
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The IB Algorithm II
As showed in (Tishby, Periera, Bialek 1999) iterating these equations converges for any β to a consistent solution:

Algorithm: randomly initiate; iterate for k ≥ 1

pk+1(t |x) =
pk (t)

Z (x , β)
exp(−βDKL[p(y |x)||pk (y |t)]) (4)

pk (t) =
∑

x

pk (t |x)p(x) (5)

pk (y |t) =
∑

x

p(y |x)pk (x |t) . (6)
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Relation with learning theory

Issues often raised about IB:
If you assume you know p(x , y) - what else is left to be
learned or modeled?
A: Relevance, meaning, explanations...
How is it different from statistical modeling (e.g. Maximum
Likelihood)?
A: it’s not about statistical modeling.
Is it supervised or unsupervised learning?
(wrong question - none and both)
What if you only have a finite sample? can it generalize?
What’s the advantage of maximizing information about Y
(rather than other cost/loss)?
Is there a "coding theorem" associated with this problem
(what is good for)?

Naftali Tishby Extracting Relevant Information from Samples



Mathematics of relevance
The Information Bottleneck Method

Further work and Conclusions

Relations to learning theory
Finite sample bounds
Consistency and optimality

Relation with learning theory

Issues often raised about IB:
If you assume you know p(x , y) - what else is left to be
learned or modeled?
A: Relevance, meaning, explanations...
How is it different from statistical modeling (e.g. Maximum
Likelihood)?
A: it’s not about statistical modeling.
Is it supervised or unsupervised learning?
(wrong question - none and both)
What if you only have a finite sample? can it generalize?
What’s the advantage of maximizing information about Y
(rather than other cost/loss)?
Is there a "coding theorem" associated with this problem
(what is good for)?

Naftali Tishby Extracting Relevant Information from Samples



Mathematics of relevance
The Information Bottleneck Method

Further work and Conclusions

Relations to learning theory
Finite sample bounds
Consistency and optimality

Relation with learning theory

Issues often raised about IB:
If you assume you know p(x , y) - what else is left to be
learned or modeled?
A: Relevance, meaning, explanations...
How is it different from statistical modeling (e.g. Maximum
Likelihood)?
A: it’s not about statistical modeling.
Is it supervised or unsupervised learning?
(wrong question - none and both)
What if you only have a finite sample? can it generalize?
What’s the advantage of maximizing information about Y
(rather than other cost/loss)?
Is there a "coding theorem" associated with this problem
(what is good for)?

Naftali Tishby Extracting Relevant Information from Samples



Mathematics of relevance
The Information Bottleneck Method

Further work and Conclusions

Relations to learning theory
Finite sample bounds
Consistency and optimality

Relation with learning theory

Issues often raised about IB:
If you assume you know p(x , y) - what else is left to be
learned or modeled?
A: Relevance, meaning, explanations...
How is it different from statistical modeling (e.g. Maximum
Likelihood)?
A: it’s not about statistical modeling.
Is it supervised or unsupervised learning?
(wrong question - none and both)
What if you only have a finite sample? can it generalize?
What’s the advantage of maximizing information about Y
(rather than other cost/loss)?
Is there a "coding theorem" associated with this problem
(what is good for)?

Naftali Tishby Extracting Relevant Information from Samples



Mathematics of relevance
The Information Bottleneck Method

Further work and Conclusions

Relations to learning theory
Finite sample bounds
Consistency and optimality

Relation with learning theory

Issues often raised about IB:
If you assume you know p(x , y) - what else is left to be
learned or modeled?
A: Relevance, meaning, explanations...
How is it different from statistical modeling (e.g. Maximum
Likelihood)?
A: it’s not about statistical modeling.
Is it supervised or unsupervised learning?
(wrong question - none and both)
What if you only have a finite sample? can it generalize?
What’s the advantage of maximizing information about Y
(rather than other cost/loss)?
Is there a "coding theorem" associated with this problem
(what is good for)?

Naftali Tishby Extracting Relevant Information from Samples



Mathematics of relevance
The Information Bottleneck Method

Further work and Conclusions

Relations to learning theory
Finite sample bounds
Consistency and optimality

Relation with learning theory

Issues often raised about IB:
If you assume you know p(x , y) - what else is left to be
learned or modeled?
A: Relevance, meaning, explanations...
How is it different from statistical modeling (e.g. Maximum
Likelihood)?
A: it’s not about statistical modeling.
Is it supervised or unsupervised learning?
(wrong question - none and both)
What if you only have a finite sample? can it generalize?
What’s the advantage of maximizing information about Y
(rather than other cost/loss)?
Is there a "coding theorem" associated with this problem
(what is good for)?

Naftali Tishby Extracting Relevant Information from Samples



Mathematics of relevance
The Information Bottleneck Method

Further work and Conclusions

Relations to learning theory
Finite sample bounds
Consistency and optimality

A Validation theorem
Notation:ˆḋenotes empirical quantities using an iid sample S of size m.

Theorem (Ohad Shamir & NT, 2007)

For any fixed random variable T defined via p(t |x), and for any
confidence parameter δ > 0, it holds with probability of at least
1− δ over the sample S that |I(X ; T )− Î(X ; T )| is upper
bounded by:

(|T | log(m) + log |T |)
√

log(8/δ)

2m
+
|T | − 1

m
,

and similarly |I(Y ; T )− Î(Y ; T )| is upper bounded by:

(1 +
3
2
|T |) log(m)

√
2 log(8/δ)

m
+

(|Y |+ 1)(|T |+ 1)− 4
m

.
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Proof idea: We apply McDiarmid’s inequality to bound the
sample variations of the empirical Entropies, and a recent
bound by Liam Paninski on entropy estimation.
The bounds on the information curve are independent of
the cardinality of X (normally the larger variable) and
weakly on |Y |. The bounds are larger for large T , which
increase with β, as expected.
The information curve can be approximated from a sample
of size m ∼ O(|Y ||T |), much smaller than needed to
estimate p(x , y)!
But how about the quality of the estimated variable T
(defined by p(t |x) itself?
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Generalization bounds

Theorem (Shamir & NT 2007)
For any confidence parameter δ ≥ 0, we have with probability of at least 1 − δ, for any T defined via p(t|x) and
any constants a, b1, . . . , b|T |, c simultaneously:

|I(X ; T )− Î(X ; T )| ≤
∑

t
f
( n(δ)‖p(t|x)− bt‖

√
m

)

+
n(δ)‖H(T |x)− a‖

√
m

,

|I(Y ; T )− Î(Y ; T )| ≤ 2
∑

t
f
( n(δ)‖p(t|x)− bt‖

√
m

)

+
n(δ)‖Ĥ(T |y)− c‖

√
m

.

where n(δ) = 2 +

√
2 log

(
|Y |+2

δ

)
, and f (x) is monotonically increasing and concave in |x|, defined as:

f (x) =

{
|x| log(1/|x|) |x| ≤ 1/e
1/e |x| > 1/e
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Corollary

Under the conditions and notation of Thm. 10, we have that if:

m ≥ e2|X |

(
1 +

√
1
2

log
(
|Y |+ 2

δ

))2

,

then with probability of at least 1− δ, |I(X ; T )− Î(X ; T )| is upper
bounded by

n(δ)

1
2 |T |

√
|X | log

(
4m

n2(δ)|X |

)
+
√
|X | log(|T |)

2
√

m
,

and |I(Y ; T )− Î(Y ; T )| is upper bounded by

n(δ)
|T |
√
|X | log

(
4m

n2(δ)|X |

)
+
√
|Y | log(|T |)

2
√

m
.
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Consistency and optimality

If m ∼ |X ||Y | and |T | << |
√
|Y | the bound is tight. This is

much less than needed to estimate p(x , y).
We also obtain a statistical consistency result:

Theorem (IB is consistent (Shamir & NT 2007))

For any given β, let A be the set of IB optimal p(t |x). As
m →∞, the optimal p(t |x) with respect to the empirical p̂(x , y),
converges in total variation distance to A with probability 1 as
m →∞.

Finally, despite its apparent non-convexity, the IB solution
is optimal and unique in a well defined sense
(Harremoes & NT 2007, Shamir & NT 2007).
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Lookahead: The Perception Action Cycle

An exciting new application of IB is for characterizing optimal
steady-state interaction between an organism and its environment:
Tishby 2007, Taylor, Tishby & Bialek 2007, Tishby & Polani 2007)
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Summary

Relevance can be identified with an extension of the
classical notion of minimal sufficient statistics
Can be quantified using information theoretic notions,
leading to the IB principle.
Yielding practical algorithms for extracting relevant
variables.
Can be done efficiently and consistently from empirical
data, but isn’t standard learning theory.
Has many applications, most exciting so far in biology and
cognitive science.
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Thank You!
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